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Abstract

Ultrasonic guided waves have been used increasingly in many areas of engineering applications. Often
modelling studies are required in order to understand basic principles of different propagation phenomena.
Various numerical methods have been used for wave propagation in complex media. This paper reports
an application of two recent numerical modelling techniques for wave propagation in a diffusion bond
sensor/actuator model consisting of five different layers of material. The spectral elements and local
interaction simulation approach are shown to be very attractive modelling tools for guided wave
propagation in complex media. Computational efficiency and the ability to model material boundaries
are the major advantages of the methods. Numerical simulations are validated using a simple sensor/
actuator experiment.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Waves in solids are important in many engineering applications. This includes elastic and
acousto-ultrasonic waves increasingly used for non-destructive damage detection in materials.
There are a number of different types of waves used for damage detection. Guided waves, such as
Rayleigh and Lamb waves, are particularly attractive for detecting surface defects in plate-like
structures. Recent years have shown a number of Lamb wave applications for damage detection
in metallic and composite structures [1–4]. These studies often involve piezoceramic sensors
embedded in or bonded on structures. Often wave attenuation and/or mode conversion due to
damage are used for monitoring. However, a number of other phenomena are observed in
propagating waves due to structural discontinuities, boundaries and different properties of
complex material layers. It appears that the monitoring strategy and interpretation of damage
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detection results require good understanding of the physical principles behind Lamb wave
propagation. Although theoretical principles of Lamb wave propagation are well known in the
literature [5,6], analytical approaches are very difficult to use in practice due to complex
anisotropy and piezoelectric effects. Therefore a number of numerical techniques are used for
wave propagation in complex media.

Wave propagation modelling has attracted many investigations; an excellent overview of
numerical techniques is given in Ref. [7]. Previous modelling studies include classical methods of
finite difference (FD) [8–10] and finite element (FE) [11–17] analysis. These studies have been
extended to boundary element methods (BEM) [18,19] that utilize surface integrals using
fundamental solutions in terms of special Green’s functions. Other modifications include finite
strip elements (FSE) [20,21]. This approach maintains the same matrix principles of the FE
analysis but requires much less data storage due to lower level of discretization and polynomial
approximations. An excellent summary and application example of matrix techniques for
modelling ultrasonic waves is given in Ref. [22]. More recently spectral elements (SE) have been
proposed for wave propagation in complex media [23–25]. This global numerical modelling
technique performs calculations of the stiffness matrix in the frequency domain. A different
approach has been proposed in a mass–spring lattice model (MSLM) [26–28] in which the inertia
and stiffness of the analyzed media is modelled using lumped parameters. Recent developments in
this area include a new local interaction simulation approach (LISA) [4,29–31]. The method does
not use any FD equations but simulates wave propagation heuristically, i.e., directly from
physical phenomena and properties.

Guided waves are in general more difficult to model than bulk waves. Relatively less research has
been performed on guided wave propagation; examples, mostly using classical matrix-based
approaches, include [3,7,8,13]. One-dimensional numerical simulations for wave propagation have
been used in practice for various engineering problems as reported for example in Refs. [29,32–34].
However, it appears that very few comparative studies of various modelling techniques of guided
wave propagation can be found in the literature. Also, experimental validation of simulation
results is not well addressed.

The aim of this paper is to report an application of two recent modelling tools, namely the SE
and LISA techniques, for wave propagation in complex media. Both methods are attractive for
guided wave propagation modelling. The SE method is a global technique that is easy to
implement using the classical FE analysis. The LISA approach is particularly useful to model
boundaries and discontinuities between different types of complex media. Both methods are
computationally very efficient. The problem of wave propagation, using the SE and LISA
approaches, is studied in a sensor/actuator configuration consisting of five different layers of
materials with one piezoceramic element generating a thickness mode of vibration. This is also the
novelty of the paper; to the best of authors’ knowledge the problem has not been analyzed in the
literature.

The paper consists of six major parts. A simulated model of actuator/sensor configuration
is presented in Section 2. For the sake of completeness, the SE and LISA modelling techniques
are briefly described in Sections 3 and 4, respectively. These two sections also include
numerical implementations. Wave propagation results are given in Section 5. This includes
experimental validation of the simulation results. Finally, the paper is concluded in
Section 6.
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2. Simulation model of actuator/sensor configuration

Guided waves used for damage detection can be generated using different sources of excitation.
Often the actuation is accomplished using piezoceramic actuators and sensors bonded or
embedded in the structure. A typical area of application is structural health monitoring (SHM),
where Lamb waves are used for damage detection in metallic and composite structures. However,
Lamb wave testing is generally complicated by the coexistence of different modes, different
experiment configurations and dispersive nature of Lamb waves. As a consequence, response
signals used for damage detection are far more complex and often very difficult to interpret.
Hence, a detailed numerical analysis of the propagation mechanism is of great interest.

The problem of wave propagation is studied in a sensor/actuator configuration used for damage
detection based on acousto-ultrasonic waves. Acousto-ultrasonic techniques utilize stress waves
introduced to a structure by a probe at one point and sensed by another probe at a different
position. Often bonded piezoelectric ceramic discs are used as probes. One piezoceramic
(actuator) element generates a thickness mode of vibration. As a result, a guided wave passes
through a couplant and propagates in a monitored specimen, through a couplant, to the second
piezoceramic element (sensor), as illustrated in Fig. 1(a). The process of wave propagation
associated with this damage monitoring procedure is often studied as problem of wave
propagation from point A to B, as shown in Fig. 1(b). However, this configuration does not reflect
the actual wave propagation used for damage detection (Fig. 1(a)). Therefore simulated and
experimental results exhibit significant differences. Actuator and sensor coupling layers
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significantly distort the wave before it leaves and reaches the piezoceramic transducers. Thus it is
important to analyze wave dispersion in bonded piezoceramics C and A or B and D, as illustrated
in Fig. 1(c).

The problem of wave propagation is studied here in a sensor/actuator diffusion bond model
consisting of five different layers of materials. Although this model is similar to two ultrasonic
probes coupled together (see Fig. 2), the focus here is on through-thickness wave propagation and
not on transducer modelling. The piezoceramic actuator converts the electrical into mechanical
energy when the electric field is applied, whereas the piezoceramic sensor converts the mechanical
into electrical energy. This is the simplest sensor/actuator configuration available for the
experimental study of wave dispersion in various transducer layers. The actual wave propagation
in various layers is illustrated in Fig. 2. The top piezoceramic layer generates the thickness mode
of vibration resulting in longitudinal (P) and shear vertical (SV) wave propagating in the first
copper layer. The energy is further transferred (leaky wave) through the couplant to the second
copper and piezoceramic layer. As a result, the wave propagates across various layers of material
in the x3 direction. This wave propagation mechanism is further explained in Ref. [35].

3. Wave propagation modelling using SE

3.1. Spectral elements

The FE analysis is the most widely used approach for wave propagation. The FE matrix
approach is based on well-defined elements that are combined together to form analyzed media.
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This allows one to study problems of complex geometries, materials and properties. However, the
method can lead to expensive computations when large numbers of elements are involved in
modelling. Increasing the analyzed frequency range may lead to some uncertainties due to
numerical errors. Also, FE analysis is closely related to FD approach in which local variables are
used in order to approximate derivatives of functions.

More recently SE analysis has been established as a powerful method used for wave
propagation. The spectral element method (SEM), high-accuracy numerical method, combines
the accuracy of conventional spectral methods and the geometric flexibility of FE methods. It is
the method of Fourier synthesis (or spectral analysis), where the behaviour of the signal is viewed
as a superposition of many infinitely long wave trains of different periods (or frequencies). The
actual response is synthesized by a judicious combination of these wave trains. Thus the problem
of characterizing a signal is transformed into one of determining the set of combination
coefficients. These coefficients are called the Fourier transform of the signal. The problem being
tackled invariably is simplified when it is expressed in terms of the Fourier transform. The last step
in the analysis involves performing an inverse transform (reconstructing the signal).

The SE approach is based on global approximations of functions, i.e., analyzed functions are at
first approximated using basis functions and then exactly differentiated. As a consequence,
relatively small number of elements can be used for modelling without loosing the accuracy. This
is particularly useful for wave propagation modelling.

In this paper one-dimensional wave propagation is considered so a dynamic stiffness relation is
established via dynamic shape functions or in other words interpolation functions. These
functions describe displacement distribution between spectral element ends. Usually in FE
analysis interpolation functions are selected as simple polynomials. In spectral FE methods they
are in fact exact displacement distributions.

The spectral analysis approach to wave propagation in a two-dimensional media is the
foundation for the spectral element method. To summarize, the analysis begins with the partial
differential equations of motion in the scalar and vector potentials F and H: These are given for
the two-dimensional case as

c2pr
2Fðx; y; z; tÞ ¼ .Fðx; y; z; tÞ; ð1Þ

c2sr
2Hðx; y; z; tÞ ¼ .Hðx; y; z; tÞ; ð2Þ

where the F and H potentials correspond to the dilatational and distortional modes [36] with
limiting phase speeds of cp and cs:

The equation of motion is twice transformed with respect to time and space, for solution in the
frequency/wave number domain. The result is an ordinary differential equation with constant
coefficients in a single-dependent variable x: The solution is often referred to as the kernel
function and the problem is solved by synthesizing the kernels appropriately to satisfy the initial
and boundary conditions. Because the subsequent inversion back to the time/space domain is to
be performed on a computer, discrete transforms are taken from the outset. The generic solutions
have the form:

Fðx; y; tÞ ¼
XN

n¼1

XM

m¼0

#Fnmðx; Zm;onÞ
cosðZmyÞ

sinðZmyÞ

( )
eiont; ð3Þ
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Hðx; y; tÞ ¼
XN

n¼1

XM

m¼0

#Hnmðx; Zm;onÞ
cosðZmyÞ

sinðZmyÞ

( )
eiont; ð4Þ

where o is the angular frequency, Z is the horizontal wave number, i is the complex
ffiffiffiffiffiffiffi
�1

p
: The

subscripts n and m are the frequency and wave number indices. For waves propagating in the
positive x direction the associated kernels are:

#Fmnðx; Zm;onÞ ¼ Amne
�ik1mnx; ð5Þ

#Hzmnðx; Zm;onÞ ¼ Bmne
�ik2mnx; ð6Þ

where Am;n and Bm;n are undetermined coefficients. The wave numbers k1mn and k2mn satisfy the
following relations:

k1mn ¼ 7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

pn � Z2m
q

; kpn �
on

cp

; ð7Þ

k2mn ¼ 7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

sn � Z2m

q
; ksn �

on

cs

: ð8Þ

A detailed treatment of these relations is given in Ref. [37]. The coefficients Am;n and Bm;n are
determined from the applied boundary conditions.

For the analysis performed on the experiment presented in the paper, two SE were used. The
first one was a one-node throw-off element and a second one was a two-node layer element.
The throw-off element represents a semi-infinite member that acts to conduct energy from the
system. The layer element represents a doubly bounded member and is used to model a finite
layer.

3.1.1. One-node element

A schematic representation of the one-node (throw-off) element is shown graphically in Fig. 3a.
The displacements u and v have the spectral representations:

uðx; y; tÞ ¼
XN

n¼1

XM

m¼0

#umnðx; Zm;onÞ
cosðZmyÞ

sinðZmyÞ

( )
eiont; ð9Þ

vðx; y; tÞ ¼
XN

n¼1

XM

m¼0

#vmnðx; Zm;onÞ
cosðZmyÞ

sinðZmyÞ

( )
eiont ð10Þ

with the kernels given as

#umnðx; Zm;onÞ ¼ �Amnðik1mnÞe�ik1mnx7BmnðZmÞe
�ik2mnx; ð11Þ

#vmnðx; Zm;onÞ ¼ 7AmnðZmÞe
�ik1mnx þ Bmnðik2mnÞe�ik2mnx: ð12Þ

These equations are analogous to shape functions in conventional FE analysis, but are
frequency and wave number dependent. At this stage the formulation is completely general and
includes both symmetric and antisymmetric parts. Since the problem of interest is initiated by
normal impact, the response is symmetric about y ¼ 0: Thus, only symmetric terms are included.
After including boundary conditions and formulae for spectral nodal forces, the frequency and
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wave number-dependent dynamic stiffness matrix has the following form:

½ #kmn	 ¼
m

ðk1mnk2mn þ Z2mÞ
ik2mnk2

sn

Zmð2Z
2
m þ 2k1mn2kmn � k2

snÞ

"
Zmð2Z

2
m þ 2k1mn2kmn � k2

snÞ

ik1mnk2
sn

#
ð13Þ

with m as the shear coefficient. The (2
 2) dynamic stiffness matrix is complex and symmetric.

3.1.2. Two-node layer element

A schematic representation of the spectral layer element is shown graphically in Fig. 3b. The
potential kernels are modified as follows to include waves propagating in the negative x direction:

#Fmnðx; Zm;onÞ ¼ Amne
�ik1mnx þ Bmne

�ik1mnðL�xÞ; ð14Þ

#Hzmnðx; Zm;onÞ ¼ Cmne
�ik2mnx þ Dmne

�ik2mnðL�xÞ; ð15Þ

where L is the length of the layer. The displacements u and v have kernels:

#umnðx; Zm;onÞ ¼ þ½�Amne
�ik1mnx þ Bmne

�ik1mnðL�xÞ	ðik1mnÞ7½Cmne
�ik2mnx þ Dmne

�ik2mnðL�xÞ	Zm; ð16Þ

#vmnðx; Zm;onÞ ¼ 8½þAmne
�ik1mnx þ Bmne

�ik1mnðL�xÞ	Zm þ ½þCmne
�ik2mnx � Dmne

�ik2mnðL�xÞ	ðik2mnÞ:

ð17Þ
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After similar transformation the complex, symmetrical dynamic stiffness matrix can be written
in the following form:

½ #kmn	 ¼

k11mn k12mn k13mn k14mn

k22mn k23mn k24mn

k33mn k34mn

sym k44mn

2
6664

3
7775; ð18Þ

where

k11mn ¼
m

Dmn

�ik2mnk2
sn

� �
k1mnk2mnz12z21 þ Z4mz11z22
� �

; ð19Þ

k22mn ¼
m

Dmn

�ik1mnk2
sn

� �
k1mnk2mnz11z22 þ Z4mz12z21
� �

; ð20Þ

k12mn ¼
m

Dmn

Zmk1mnk2mnð�k2
sn þ 4Z2mÞ½4e

�ik1mnLe�ik2mnL � z12z22	

�
m

Dmn

Zm½Z
4
m � Z2mk2

2mn þ 2k2
1mnk2

2mn	z11z21; ð21Þ

k14mn ¼
m

Dmn

2Zmk1mnk2mnk2
sn½e

�ik1mnLz22 � e�ik2mnLz12	; ð22Þ

k13mn ¼
m

Dmn

2ik2mnk2
sn½k

2
1mnk2

2mne
�ik1mnLz21 þ Z2me

�ik2mnLz11	; ð23Þ

k24mn ¼
m

Dmn

2ik1mnk2
sn½k

2
1mnk2

2mne
�ik2mnLz11 þ Z2me

�ik1mnLz21	 ð24Þ

and

Dmn ¼ 2Z2mk1mnk2mn½4e�ik1mnLe�ik2mnL � z12z22	 � ½k2
1mnk2

2mn þ Z4m	z11z21; ð25Þ

z11 ¼ 1� e�2ik1mnL; z12 ¼ 1� e�2ik2mnL; z21 ¼ 1þ e�2ik1mnL; z22 ¼ 1þ e�2ik2mnL: ð26Þ

3.2. Numerical implementation

For wave propagation modelling in a diffusion bond model, described in Section 2, two-node
layer elements have been used. The numerical model has been constructed using five elements,
where each of the elements has represented material layers of the analyzed sensor/configuration
structure, as shown in Fig. 2. One throw-off element has been added at the bottom. The thickness
of the top piezoceramic layer was much shorter than the wavelength of the wave excitation
frequency, especially for short pulses used in the study. Therefore, it was impossible to introduce
the excitation signal to this layer, since destructive interferences in the form of a reflected wave
could occur. Although previous studies [6,29] show that these interferences are partially cancelled,
an extra source node has been added to the model and a pulse signal has been injected with the
advanced time, in order to reduce simulation disturbances. This advanced time depends on the
product of wavelength of the excitation signal and the number of pulse cycles used. The dynamic
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stiffness matrix has been computed using the fast Fourier transform (FFT) analysis based on 4096
data points. All calculations have been performed in MATLABs on a PC.

4. Wave propagation modelling using LISA

4.1. Local interaction simulation approach

The LISA is formally similar to the FD approach. However, the associated iteration equations
are obtained directly from heuristic considerations. Since local interactions between elements are
transferred directly for numerical calculations, therefore wave partial differential equations are
bypassed and the algorithm is numerically extremely efficient. Additionally, the LISA already
inherits the sharp interface model (SIM), which lowers a number of interface grid points in
heterogeneous media. The basic idea of the SIM is to average the interface grid point with the
surrounding grid points. The main assumption here is that perfect/smooth contact is maintained
between different material layers. The LISA/SIM allows for a more physical and unambiguous
treatment of interface discontinuities for different physical layers. The technique has been
compared with FDE methods to demonstrate the stability and reliability, particularly in situations
where the specimen contains more than one physical property. The results show the LISA/SIM
method provides more accurate results with less computer calculations in cases where models
come with more than one physical property. The method is also more stable than the classical
FDE approach for imperfect material interfaces or heterogeneous materials. This is due to the fact
that in the LISA/SIM method the numerical error of the impedance changing across the interface
is negligible, if compared with the classical FDE approach which may produce large numerical
errors. For the sake of completeness the 2-D LISA approach is described in this section.

The 2-D model consists of elementary cells located in the 2-D Cartesian space (Fig. 4). The cells
contain all the physical properties of the analyzed media. Each grid point represents an
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intersection of four elementary cells. Assuming that the analyzed specimen is orthotropic and
symmetrical with respect to the z-axis, the fundamental elastodynamic wave equation for the
particle displacement can be given as

@lðSklmn@nwmÞ ¼ r .wk ðk; l;m; n ¼ 1; 2Þ; ð27Þ

where S is the stiffness tensor, r is the density and .wk is the particle displacement.
This equation can be rewritten more explicitly as

@kðskwk;k þ lwh;hÞ þ @h½mðwk;h þ wh;kÞ	 ¼ r .wk; ð28Þ

where k ¼ 1; 2 and h ¼ 3� k: For simplicity, a square elementary cell of length e is used. The
central intersection point P in Fig. 4 is surrounded by eight-node points. This point may contain a
maximum of four possible different physical properties.

These are

sðkÞn ¼ Skkkk; ðk ¼ 1; 2; n ¼ 1; 8Þ;

ln ¼ S1122; ðn ¼ 1; 8Þ;

mn ¼ S1212; ðn ¼ 1; 8Þ;

ð29Þ

where k is the number of different types of material and n is the number of nodal points. As a
consequence of the SIM approach, the density r; shear modulus m and strain s can be redefined at
the interface as the average values taken from the neighbour cells

sðkÞ ¼
1

4

P8
n¼1 s

ðkÞ
n ; ðk ¼ 1; 2Þ;

m ¼
1

4

P8
n¼1 mn; r ¼

1

4

P8
n¼1 rn:

ð30Þ

The above model can be used for both homogeneous and heterogeneous media. In this model,
the horizontal (x direction) displacement component u can be obtained from the displacement
vector w1; whereas the vertical (y direction) displacement component v can be derived from the
displacement vector w2: Both displacement values can be given in time as

utþ1 ¼ 2u½1� wðsð1Þ þ mÞ	 � ut�1 þ
1

2
w

sð1Þ1 u5 þ sð1Þ2 u7 þ sð1Þ3 u7 þ sð1Þ4 u5

þm1u6 þ m2u6 þ m3u8 þ m4u8

" #

þ
1

4
w

ðl1 þ m1Þðv1 � vÞ � ðl2 þ m2Þðv2 � vÞ

þðl3 þ m3Þðv3 � vÞ � ðl4 � m4Þðv4 � vÞ

þðl1 � m1Þðv6 � v5Þ � ðl2 � m2Þðv6 � v7Þ

þðl3 � m3Þðv8 � v7Þ � ðl4 � m4Þðv8 � v5Þ

2
6664

3
7775; ð31aÞ
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vtþ1 ¼ 2v½1� wðsð2Þ þ mÞ	 � vt�1 þ
1

2
w

sð2Þ1 v6 þ sð2Þ2 v6 þ sð2Þ3 v8 þ sð2Þ4 v8

þm1v5 þ m2v7 þ m3v7 þ m4v5

" #

þ
1

4
w

ðl1 þ m1Þðu1 � uÞ � ðl2 þ m2Þðu2 � uÞ

þðl3 þ m3Þðu3 � uÞ � ðl4 � m4Þðu4 � uÞ

þðl1 � m1Þðu5 � u6Þ � ðl2 � m2Þðu7 � u6Þ

þðl3 � m3Þðu7 � u8Þ � ðl4 � m4Þðu5 � u8Þ

2
6664

3
7775: ð31bÞ

The constant w in the above equation is defined as

w ¼
t
re2

; ð32Þ

where t is the time step. In order to ensure that simulation is numerically stable, the model
configuration has to satisfy the following condition

C ¼
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

L þ V2
T

q
e

p1; ð33Þ

where VL is the longitudinal velocity and VT is the transverse velocity. For attenuative materials
the LISA Eq. (31) needs to be rewritten as

utþ1 ¼ 2uq½1� wðsð1Þ þ mÞ	 � qut�1 þ
1

2
wq

sð1Þ1 u5 þ sð1Þ2 u7 þ sð1Þ3 u7 þ sð1Þ4 u5

þm1u6 þ m2u6 þ m3u8 þ m4u8

" #

þ
1

4
wq2

ðl1 þ m1Þðv1 � vÞ � ðl2 þ m2Þðv2 � vÞ

þðl3 þ m3Þðv3 � vÞ � ðl4 � m4Þðv4 � vÞ

þðl1 � m1Þðv6 � v5Þ � ðl2 � m2Þðv6 � v7Þ

þðl3 � m3Þðv8 � v7Þ � ðl4 � m4Þðv8 � v5Þ

2
6664

3
7775; ð34aÞ

vtþ1 ¼ 2vq½1� wðsð2Þ þ mÞ	 � qvt�1 þ
1

2
wq

sð2Þ1 v6 þ sð2Þ2 v6 þ sð2Þ3 v8 þ sð2Þ4 v8

þm1v5 þ m2v7 þ m3v7 þ m4v5

" #

þ
1

4
wq2

ðl1 þ m1Þðu1 � uÞ � ðl2 þ m2Þðu2 � uÞ

þðl3 þ m3Þðu3 � uÞ � ðl4 � m4Þðu4 � uÞ

þðl1 � m1Þðu5 � u6Þ � ðl2 � m2Þðu7 � u6Þ

þðl3 � m3Þðu7 � u8Þ � ðl4 � m4Þðu5 � u8Þ

2
6664

3
7775; ð34bÞ

where q is the attenuation parameter.
The current study involves one-dimensional wave propagation. Thus Eq. (34) can be simplified

as

wi;tþ1Eqðwiþ1;t þ wi�1;tÞ � q2ðwi;t�1Þ: ð35Þ

This involves a one-dimensional iteration process.
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4.2. Numerical implementation

The LISA iteration Eq. (35) for the heterogeneous material and the actuator/sensor diffusion
bond model, described in Section 2, has been used in numerical simulations for attenuation and
non-attenuation properties. The space grid for the analyzed model included 301 meshing elements.
Similarly to SE approach, one extra source layer (first element) has been added to inject an input
signal to the sensor/actuator model, as described in Section 3.2. The attenuation parameter q in the
coupling layer was assumed to be 0.996. This parameter usually varies as a function of the number
of elements in the coupling layer, i.e., the value is proportional to the space grid and inversely
proportional to the number of elements. The thickness of the coupling layer was equal to the
wavelength divided by eight. This is due to the fact that the theory predicts a continuous wave
crossing at octal-wavelength layer and retains reflection until the amplitude gradually decreases to
almost zero [38]. The simulation algorithm has been coded using MATLABs and run on a PC.

5. Wave propagation analysis

5.1. Simulation results

Fig. 5 illustrates the advanced time pulse injection into the model (top part), and the interaction
of wave propagation through different material layers. Here the solid line indicates the LISA
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simulation results whereas the dashed line gives the SE simulation results. Two major effects can
be observed in the simulated results. These are wave attenuation and wave dispersion. Amplitude
reduction can be observed in all material layers. However, the middle-coupling layer absorbs most
of the energy before further transmission of the signal to the fourth copper layer. Note that there
is some reflection and transmission at the interfaces between copper and coupling layers. As a
result, the wave decays exponentially according to the attenuation parameter q: There is no
further reflection from both piezoceramic layers. The final signal amplitude, at the bottom
piezoceramic layer, is reduced approximately by the factor of 50.

Fig. 5 also illustrates how the five-cycle sine wave propagates into different physical material
layers and becomes more dispersive in each layer. Some energy is stored inside the layers. This is
consistent with the partial reflection of the pulse from the different material layers and wave energy
leakage. Also, the wave velocity changes due to time delay and this results in wave dispersion.

Note that the advanced time pulse injection waves in the first piezoceramic layer are different for
both simulation results. This is due to the fact that different methods of injection were applied in
both simulation techniques. The SE simulated wave travels faster after crossing the copper/
coupling interface and then lags behind the LISA simulated wave after crossing the coupling/
copper interface. The piezoceramic/copper and copper/piezoceramic interfaces do not produce
such effects. Clearly the other two interfaces involve much more significant differences in the
material properties, as shown in Table 1. It appears that the LISA approach copes better with these
sharp interfaces. The number of SE in the SE model needs to coincide with the number of
discontinuities. Therefore the number of elements in the current simulation was equal to the
number of material layers. One extra layer was used to inject the signal, as described in Section 4.2.
This resulted in a significant reduction of the matrices involved. The model reduction is the major
advantage of the SE method. In contrast, the LISA approach involves 301 elements. However, in
two- and three-dimensional simulation the difference between both methods will be less significant.

5.2. Experimental validation

The wave propagation simulation results have been validated using a simple experiment. This
involved a similar actuator/sensor configuration to the one described in the simulation model in
Section 3. The piezoceramic actuator used in the experimental studies could operate either in S0 or
A0 Lamb wave mode using excitation frequency equal to 260.5 and 100 kHz, respectively. The
frequency of the S0 mode has been used in this experiment, in order to match the simulated
excitation frequency. The excitation signal was generated using the arbitrary function TTi-TGA
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Table 1

Summary of physical properties used for wave propagation modelling

Layer Material Density (kg/m) Theory velocity (m/s) Thickness (mm)

1 SONOX-P5 7650 4410 0.5

2 COPPER 8930 4660 0.3

3 COUPLING 870 1740 0.22

4 COPPER 8930 4660 0.3

5 SONOX-P5 7650 4410 0.5
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1230 signal generator. The wave signal propagated through the layers to the piezoceramic sensor.
The LeCroy Waverunner LT224 oscilloscope was used to display the response from the sensor.
Fig. 6 shows the entire experimental set-up.
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The comparison between the simulated and experimental results is shown in Fig. 7. Here the
solid line gives the LISA simulation results; the dashed line indicates the SE simulation results,
whereas the dotted line exhibits the experimental result. Both simulated wave packets are slightly
slower and longer than the experimental wave response. This is due to the fact that the five-cycle
sine wave used in the experiment has not been modulated with the Hanning window.
Nevertheless, a very good agreement between simulated and experimental results can be seen.
The mean square error (MSE) defined as yi is the experiment data point at i location as reference
value, and the simulation value at i location is Kyi:

MSEðyÞ ¼
100

N � s2
y

XN

i¼1

ðyi � KyiÞ
2 ð36Þ

has been used to compare the experimental and simulated results. Here, yi and Kyi are the
experimental and simulated data points for location i; s2

y is the variance of the experimental data
which is normalized by N number of data points. The comparison errors are shown in Table 2.

6. Conclusions

Lamb wave propagation in a diffusion bond model has been studied. The model consisted of
five different layers of materials with one piezoceramic layer generating the thickness mode
vibration. Two numerical simulation techniques, namely spectral elements (SE) and local
interaction simulation approach (LISA), have been investigated. Both techniques have been
shown to be very attractive modelling tools for guided wave propagation in complex media.
Computational efficiency and the ability to model material boundaries are the major advantages
of the methods used. It appears that model reduction is the major advantage of the SE analysis. It
is known from the literature that the LISA approach is well suited to wave propagation between
sharp interfaces. This has been proven again in the paper. Numerical simulations have been
validated using a simple sensor/actuator experiment.

Both simulated and experimental studies have shown that the coupling layer distorts the wave
packet propagation, due to its low impedance at the interface point and the slow wave speed
within the medium. This is vital, especially when piezoceramic sensors and low voltage acousto-
ultrasonic inspection are used for damage detection in structures. Thinner coupling layers will not
only have less wave attenuation but will also reduce surface coupling between piezoceramics and
the analyzed structure. This will influence the reliability of inspection.
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Table 2

Summary of statistical comparison between two simulation methods

Experiment LISA SE

Number of grid points — 301 4096

Mean �0.008423 0.0006926 �0.00075

Variance 0.004953 0.004079 0.003982

Sum square error 1.3974 0.8689

Mean square error (percentage) — 26.4623 16.4547

B.C. Lee et al. / Journal of Sound and Vibration 276 (2004) 671–687 685



Further studies are required to analyze various wave propagation phenomena and scattering
with defects. This should include two-dimensional wave propagation in metallic structures.
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